
Clustering the Space of Maximum Parsimony
Reconciliations in the Duplication-Transfer-Loss

Model?

A. Ozdemir1, M. Sheely1, D. Bork2, R. Cheng2, R. Hulett3, J. Sung1, J. Wang1,
and R. Libeskind-Hadas1

1 Department of Computer Science, Harvey Mudd College, 301 Platt Blvd., Claremont,
California, 91711 USA {aozdemir,msheely,jsung,jwang,hadas}@g.hmc.edu

2 Department of Computer Science, Carnegie Mellon University, 5000 Forbes Ave,
Pittsburgh, Pennsylvania, 15213 USA {dbork,rcheng}@andrew.cmu.edu

3 Department of Computer Science, Stanford University, 450 Serra Mall, Stanford,
California, 94305 USA reyna.hulett@cs.stanford.edu

Abstract. Phylogenetic tree reconciliation is widely used in the fields of
molecular evolution, cophylogenetics, parasitology, and biogeography for
studying the evolutionary histories of pairs of entities. Reconciliation is
often performed using maximum parsimony under the DTL (Duplication-
Transfer-Loss) event model. Since the number of maximum parsimony
reconciliations (MPRs) can be exponential in the sizes of the trees, an
important problem is that of finding a small number of representative
reconciliations. We give a polynomial time algorithm that can be used
to find the cluster representatives of the space of MPRs with respect
to a number of different clustering algorithms and specified number of
clusters.

Keywords: Tree reconciliation, Duplication-Transfer-Loss model, clus-
tering

1 Introduction

Phylogenetic tree reconciliation is an important technique for studying the
evolutionary histories of pairs of entities such as gene families and species,
parasites and their hosts, and species and their geographical habitats. The
reconciliation problem takes as input two trees and the associations between
their leaves and seeks to find a mapping between the trees that accounts for their
topological incongruence with respect to a given set of biological events. In the
widely-used DTL model the four event types are speciation, duplication, transfer,
and loss [1–6,16]. We denote the two trees as the species tree (S) and the gene
tree (G), although these trees could be host and species trees or area cladograms

? This work was funded by the U.S. National Science Foundation under Grant Numbers
IIS-1419739 and 1433220.

2 A. Ozdemir et. al

and species trees in the contexts of cophylogenetic and biogeographical studies,
respectively.

Reconciliation in the DTL model is typically performed using a maximum
parsimony formulation, where each event type has an assigned cost and the
objective is to find a reconciliation of minimum total cost, called a maximum
parsimony reconciliation or MPR. Efficient algorithms are known for finding
MPRs in the DTL model [1, 15].

In general, the number of MPRs can grow exponentially with the sizes of the
species and gene trees [13]. Consequently, a number of efforts have been made
to summarize the vast space of MPRs. Nguyen et al. [10] showed that choosing
a single random MPR can lead to inaccurate inferences and gave an efficient
algorithm to compute a median MPR. Median MPRs were subsequently used to
summarize reconciliation space in [14]. Bansal et al. [2] showed how a sample of
MPRs can be selected uniformly at random. Ma et al. [9] examined the problem
of finding a set of k reconciliations that collectively cover the most frequently
occurring events in MPR space, for a given number k.

We study the problem of clustering the space of MPRs, both to represent the
space by a small number of cluster representatives and to gain insights into the
structure of the space. We first define the reconciliation count function that can
be used to implement a number of different clustering algorithms for MPR space.
We then show that the reconciliation count function can be computed exactly in
polynomial time (where the degree of the polynomial depends on the number of
clusters), in spite of the fact that the number of MPRs can be exponential in the
size of the given trees. Our results leverage the seminal work of Scornavacca et
al. [12] and Nguyen et al. [10].

We demonstrate the utility of the reconciliation count function by showing
how it can be used to implement two clustering algorithms for k-medoids and
k-centers. The k-medoids problem seeks to find a representative set of k MPRs,
called medoids, such that the sum of the distances between each MPR and its
nearest medoid is minimized. Similarly, k-centers seeks to identify a representative
set of k MPRs, known as centers, such that the maximum distance between each
MPR and its nearest center is minimized. These are just two examples of the
many clustering algorithms that can be implemented using reconciliation counts.

This work provides new tools for exploring the structure and diversity of
MPR space that may not be gleaned from a single median reconciliation or a
set of randomly sampled reconciliations. Thus, the results presented here are
potentially useful to practitioners who wish to better understand the space of
optimal reconciliations for specific data sets as well as for researchers seeking to
gain better insights into MPR space in general.

In summary, in this paper:

1. We define the reconciliation count function and give a polynomial-time
algorithm for computing it.

2. We demonstrate the utility of the reconciliation count function by showing
how it can be used to solve the k-medoids and k-centers problems for MPR
space and to compute statistics on the clusterings.

Clustering DTL Reconciliations 3

3. In the Supplementary Materials, we give experimental results using the Tree
of Life data set [5], comparing the k-medoids and k-centers representatives to
randomly selected ones. (See www.cs.hmc.edu/~hadas/supplement.pdf.)

4. We provide an implementation of our algorithms. (See www.cs.hmc.edu/

~hadas/clusters.zip).

2 Definitions

In this section we give definitions and notation used throughout this paper. In
the interest of brevity, we provide the minimum background required to develop
our results in the subsequent sections. For completeness, formal definitions are
given in the Supplementary Materials.

2.1 Maximum Parsimony Reconciliations

An instance of the DTL maximum parsimony reconciliation problem comprises a
gene tree G, a species tree S, a leaf mapping Le from the leaves of G to the leaves
of S (which need not be one-to-one nor onto), and positive costs for duplication,
transfer, and loss events. We assume that the trees are undated in the sense that
no information is given about the relative times of speciation events in either
the gene or species trees. A reconciliation is a mapping M of the vertices of G
into the vertices of S that is consistent with the leaf mapping Le and, for each
internal gene vertex g with children g′ and g′′, neither M(g′) nor M(g′′) are
ancestors of M(g) and at least one of M(g′) and M(g′′) is either equal to, or a
descendant of, M(g).

The mapping M induces speciation, duplication, transfer, and loss events.
While the formal definitions of these events are given in the Supplementary
Materials, the following suffices for our treatment: Let g be an internal vertex in
G with children g′ and g′′. Vertex g is a speciation vertex if M(g) is the most
recent common ancestor ofM(g′) andM(g′′) andM(g′) andM(g′′) are neither
equal to one another nor ancestrally related. Vertex g is a duplication vertex
if M(g) is the most recent common ancestor of M(g′) and M(g′′) but M(g′)
and M(g′′) are either equal or ancestrally related. A duplication can be viewed
as a mapping of gene vertex g onto the edge from the parent of M(g) to M(g).
Vertex g is a transfer vertex if exactly one of M(g′) or M(g′′) is a descendant of
M(g) and the other is not in the subtree rooted at M(g). A loss event arises for
each internal vertex on the path in S from M(g) to M(g′), for each parent-child
pair (g, g′).1

The objective of the DTL maximum parsimony reconciliation problem is
to find a reconciliation that minimizes the sum of the number of duplication,
transfer, and loss events weighted by their respective event costs. We henceforth
refer to maximum parsimony reconciliations as MPRs. A number of similar

1 This characterization slightly simplifies the way that losses are actually counted
and omits details about losses arising from transfer events. While this suffices for
presenting our work, full details are given in the Supplementary Materials.

4 A. Ozdemir et. al

dynamic programming algorithms have been given for finding MPRs in time
O(|G||S|) [1, 16]. Figure 1(a) shows a species tree, gene tree, and a leaf mapping
and (b) and (c) show two different MPRs.

2.2 Reconciliation Graphs

Scornavacca et al. [12] developed a data structure called a reconciliation graph
for compactly representing the space of all MPRs for dated trees. Ma et al. [9]
adopted reconciliation graphs for undated trees. For the purposes of the remainder
of this paper, the following characterization suffices (with full details in the
Supplementary Materials):

The reconciliation graph for an instance of the DTL MPR problem (comprising
trees G, S, leaf mapping Le and given DTL event costs) is a directed acyclic graph
(DAG) that consists of mapping vertices and event vertices and directed edges
between these two vertex types. Specifically, the graph contains a mapping vertex
for each (g, s) pair such thatM(g) = s for some MPRM and an event vertex for
each event in which M(g) = s, with a directed edge from mapping vertex (g, s)
to each such event vertex. (Note that a mapping vertex (g, s) may have edges to
multiple event vertices since, for example, g may be mapped to s as a speciation
event in one MPR and as a transfer event in a different MPR.) Let g′ and g′′

denote the children of g. If some MPR,M, contains an event in whichM(g) = s,
M(g′) = s′, M(g′′) = s′′ then that event vertex for (g, s) has a directed edge
to mapping vertices (g′, s′) and (g′′, s′′). Thus, each speciation, duplication, and
transfer event vertex has out-degree 2. Each loss event is represented by an event
vertex with out-degree 1 corresponding to a loss induced by a particular vertex
in the species tree. Finally, each leaf association (g,Le(g)) has a corresponding
event vertex which is a sink (vertex of out-degree 0) of the reconciliation graph.
The reconciliation graph can be constructed in time O(|G||S|2) [9]. The right side
of Figure 1 shows the reconciliation graph for the problem instance in Figure 1(a)
with DTL costs 1, 4, and 1 respectively.

This brings us to the two key results that we need in the remainder of this paper.
First, there is a bijection between MPRs and subgraphs of the reconciliation graph
called reconciliation trees. A reconciliation tree begins with a mapping vertex
of the form (g, s) where g is the root of the gene tree (but s is not necessarily
the root of the species tree since, as shown in Figure 1(b), a reconciliation need
not involve the root of S). The mapping vertex (g, s) is followed by a directed
edge to any one neighbor in the reconciliation graph, which is an event vertex
corresponding to an event in which g is mapped to s. Next, both neighbors of
that event vertex are included; each is a mapping vertex corresponding to the
mapping of a child of g. From each such mapping vertex, we again choose any
single event vertex neighbor. This process (formalized in the Supplementary
Materials) is repeated until the sinks of the reconciliation graph are reached. It
is not difficult to show that this process yields a tree and the bijection between
these reconciliations trees and MPRs is proved in [9, 12]. Henceforth, we use the
terms reconciliation trees and MPRs interchangeably as we do for the terms

Clustering DTL Reconciliations 5

A	 B	

C	

D	

E	

c	

d	

e	

b	

a	

(a)		

A	 B	
D	

E	

a	
c	

b	

d	

e	

specia*on	

transfer	

(b)		

C	

C	

b	

A	 B	
D	

E	

a	

c	

d	

e	

duplica*on	

specia*on	

loss	

loss	

loss	

(c)		

(e, E)

(S(a,B), {(c, C), (b, D)}) (D(a,A), {(c, A), (b, A)})

(S(b,A), {(d, B), (e, E)})(T(b,D), {(d, D), (e, E)}) (L(c,A), {(c, B)})

(L(c,B), {(c, C)}) (L(d,B), {(d, D)})

(C(c,C), ;) (C(d,D), ;) (C(e,E), ;)

(c, C)

(b, A)

(d, D)

(c, B) (d, B)

(b, D) (c, A)

(a, B) (a, A)

Fig. 1. Top: (a) An instance of the DTL reconciliation problem comprising species tree
(black), gene tree (gray), and leaf mapping. Duplication, transfer and loss costs are 1,
4, and 1, respectively. (b) A reconciliation with one speciation and one transfer. (c) A
reconciliation with one speciation, one duplication, and three losses. Both reconciliations
are MPRs with total cost 4. Bottom: The reconciliation graph for the DTL instance
in (a). Vertices with solid boundaries are event vertices and those with dashed bound-
aries are mapping vertices. Event vertices are designated with S (speciation event), D
(duplication event), T (transfer event), L (loss event), and C (leaf association). The
reconciliation tree indicated by solid edges corresponds to the MPR in (b) and the
reconciliation tree indicated by dashed edges corresponds to the MPR in (c), with bold
edges representing the shared parts of the two reconciliations.

6 A. Ozdemir et. al

event vertices and events. The right side of Figure 1 shows the two reconciliation
trees corresponding to the two reconciliations in Figure 1(b) and (c).

The second major result that we need is as follows: Given a score function,
σ, that maps vertices in the reconciliation graph to non-negative real numbers,
we can find a reconciliation tree (that is, a MPR) of maximum total score in
polynomial via a simple O(|G||S|2) time dynamic programming algorithm [9, 10].
Note that this maximization problem should not be confused with the problem
of finding a minimum cost reconciliation. The vertices in the reconciliation graph
a priori represent events and mappings in minimum cost reconciliations. The
score σ(v) can represent an arbitrary quantity that we wish to maximize over all
minimum cost reconciliations.

3 Clustering Reconciliation Space

In this section we define the reconciliation count function and then show how
two well-known clustering algorithms, one for medoids and one for centers, can
be implemented for MPR space using this function. In Section 4 we give the
algorithm for computing the reconciliation count function.

In general, our goal is to find a set of k cluster representatives for a given
clustering method. We use the notation T = {T1, . . . , Tk} to represent such a set
of k MPRs. Let R denote an MPR and let E(R) denote the set of events in R.
For any two MPRs R1, R2, let the distance between R1 and R2, d(R1, R2), be
the size of the symmetric set difference of the event sets [10]:2

d(R1, R2) = |E(R1) \ E(R2)|+ |E(R2) \ E(R1)|

For convenience, we define the distance between a reconciliation and a set
T = {T1, . . . , Tk} of MPRs as a k-dimensional vector that contains the distance
from the reconciliation to each reconciliation in the set:

d(R, T) = d(R, {T1, T2, ..., Tk}) = [d(R, T1), d(R, T2), ..., d(R, Tk)]

Definition 1 (Reconciliation Count Function). Let R denote the set of all
MPRs for a given DTL problem instance and let T = {T1, . . . , Tk} denote a
set of k MPRs in R. Let v denote an event vertex in the reconciliation graph.
The reconciliation count function CountT ,v : Nk → N maps d ∈ Nk to the
number of reconciliations R ∈ R that contain event vertex v and d(R, T) = d.
Let CountT (d) denote the number of reconciliations R ∈ R with d(R, T) = d,
regardless of whether or not they contain a particular event vertex.

In the next two sections we demonstrate the utility of the reconciliation count
function by showing how it can be used to solve the k-medoids and k-centers
problems for MPR space.

2 Other distance functions are also possible.

Clustering DTL Reconciliations 7

3.1 k-Medoids

Let R denote the set of all MPRs for a given instance of the DTL reconciliation
problem. Let k be a positive integer. A set of k MPRs, T = {T1, T2, ...Tk} ⊆ R,
induces a partition of R into clusters CT1

, CT2
, ..., CTk

such that CTi
denotes

the set of MPRs that are closer to Ti than to any other MPR in T , breaking
ties arbitrarily. The k-medoids problem seeks to find a set T of k MPRs that
minimizes the sum of the distances between each MPR in R and a closest MPR
in T . More formally, the objective is to find:

arg min
T ⊂R
|T |=k

∑
Ti∈T

∑
R∈CTi

d(R, Ti)

The elements of T are called medoids. Since the k-medoids problem is NP-
hard in general [7], heuristics are used to find good, but not necessarily optimal,
solutions. Park et al. [11] offer a simple and effective local search algorithm, with
T initially set to k arbitrarily chosen points (MPRs in our case). In each iteration,
the approximate medoid of each cluster is replaced with the MPR in that cluster
that minimizes the sum of distances within that cluster. In practice, the algorithm
iterates until some termination condition is reached (e.g., a maximum number of
iterations). The algorithm is given below.

Algorithm 1 k-medoids heuristic [11]

1: procedure k-medoids(R, k)
2: T ← k arbitrary MPRs in R
3: while some termination condition is not satisfied do
4: for Ti ∈ T do
5: Ti ← arg minM∈R

∑
R∈CTi

d(R,M)

6: return T

Since the number of MPRs can be exponentially large, we cannot compute
line 5 in polynomial time by evaluating

∑
R∈CTi

d(R,M) for each M .

To address this problem, we define the set of functions {gi : Nk → {0, 1}},
each of which takes a vector of the distances from an MPR R ∈ R to each in
Tj ∈ T as an input and determines whether R is in CTi

. That is,

gi(d = [d1, d2, . . . , dk]) =

{
1 if i is the least index such that di ≤ dj for all 1 ≤ j ≤ k
0 otherwise

Now, we can rewrite line 5 in the algorithm as

arg min
M∈R

∑
R∈R

d(R,M) · gi(d(R, T)) (1)

By definition, d(R,M) = |E(R) \ E(M)|+ |E(M) \ E(R)|. Moreover:

8 A. Ozdemir et. al

|E(R) \ E(M)|+ |E(M) \ E(R)| = |E(R) ∪ E(M)| − |E(R) ∩ E(M)|
= |E(R)|+ |E(M)| − 2|E(R) ∩ E(M)|

Thus, we can rewrite (1) as:

arg min
M∈R

∑
R∈R

(
|E(R)| − 2|E(M) ∩ E(R)|+ |E(M)|

)
· gi (d(R, T)) (2)

Since |E(R)| does not depend on M , the minimization problem in (2) is
equivalent to the following maximization problem:

arg max
M∈R

∑
R∈R

(
2|E(M) ∩ E(R)| − |E(M)|

)
· gi (d(R, T)) (3)

Next, we rewrite this as a summation over the events in M :

arg max
M∈R

∑
e∈E(M)

∑
R∈R

(
2 |{e} ∩ E(R)| − 1

)
· gi (d(R, T)) (4)

We then split the sum to yield:

arg max
M∈R

∑
e∈E(M)

(∑
R∈R

2 |{e} ∩ E(R)| · gi (d(R, T))−
∑
R∈R

gi (d(R, T))

)
(5)

Define S(e) to be the set of all reconciliations containing event e. We rewrite
the first inner summation as a sum over S(e), since |{e} ∩ E(R)| is 1 for all
R ∈ S(e) and 0 for all R 6∈ S(e):

arg max
M∈R

∑
e∈E(M)

 ∑
R∈S(e)

2 · gi (d(R, T))−
∑
R∈R

gi (d(R, T))

 (6)

Define f(d, X) to be the set of reconciliations in X such that d(R, T) =
d. Notice that we can partition S(e) as { f(d, S(e)) | d ∈ Nk} and R as
{ f(d,R) | d ∈ Nk}. Then we can rewrite our sum over these partitions as:

arg max
M∈R

∑
e∈E(M)

∑
d∈Nk

 ∑
R∈f(d,S(e))

2 · gi (d(R, T))−
∑

R∈f(d,R)

gi (d(R, T))

 (7)

The inner terms can now be simplified, yielding:

arg max
M∈R

∑
e∈E(M)

∑
d∈Nk

 ∑
R∈f(d,S(e))

2 · gi(d)−
∑

R∈f(d,R)

gi(d)

 (8)

Clustering DTL Reconciliations 9

Now we define σ : V (G)→ R as a function from the vertices of the reconcilia-
tion graph to the reals as follows:

σ(v) =

{∑
d∈Nk

(
2 · |f(d, S(v))| − |f(d,R)|

)
· gi(d) if v is an event vertex

0 if v is a mapping vertex

Notice that |f(d, S(v))| = CountT ,v(d) and |f(d,R)| = CountT (d) so we
have:

σ(v) =

{∑
d∈Nk

(
2 · CountT ,v(d)− CountT (d)

)
· gi(d) if v is an event vertex

0 if v is a mapping vertex

This reduces to finding:

arg max
M∈R

∑
v∈V (M)

σ(v) (9)

As noted in the previous section, the problem of finding a reconciliation that
maximizes the score of its constituent event vertices can be solved in O(|G||S|2)
time by dynamic programming [9,10]. Thus, we have shown that the widely-used
k-medoids heuristic of Park et al. [11] can be applied to MPR space by computing
the reconciliation count function CountT ,v.

3.2 k-Centers

The objective of the k-centers problem is to find a set T of k MPRs that minimizes
the covering radius, the maximum distance between any MPR and the nearest
element in T . More formally, letting MC denote the function that returns the
minimum component of a vector, we seek to find:

arg min
T ⊂R
|T |=k

max
R∈R

MC(d(R, T))

While this problem is NP-complete [7], Gonzalez [8] proved that the following
algorithm finds solutions that are guaranteed to be within a factor of two of
optimal:

Algorithm 2 k-centers 2-approximation [8]

1: procedure k-centers(R, k)
2: T ← {arbitrary R in R}
3: for k − 1 iterations do
4: T ← arg maxR∈R MC(d(R, T))

5: T ← T ∪ {T}
6: return T

10 A. Ozdemir et. al

Line 4 cannot be efficiently computed by simple iteration because there can
be exponentially many MPRs. Again, the reconciliation count function will be
applied to perform this step in polynomial time.

Given some number of current centers, line 4 of Algorithm 2 seeks a reconcilia-
tion that maximizes the minimum distance from the rest. Given the reconciliation
counts to the current centers, we can find this distance by the following algorithm.

Algorithm 3 Farthest from centers
1: procedure FFC(T)
2: d∗ ← 0
3: for d ∈ Nk do
4: if CountT (d) > 0 then
5: if MC(d) > MC(d∗) then
6: d∗ ← d
7: return d∗

Although the loop in Algorithm 3 iterates over all k-dimensional vectors over
the natural numbers, we will see later that only a polynomial number of vectors
need be considered.

Algorithm 3 gives us a distance vector, but not the desired reconciliation at this
distance. However, we can augment the algorithm for computing reconciliation
counts (given in the next section) to record one such reconciliation. That is,
we can extend the reconciliation counts algorithm with annotations such that
CountT ,v(d) = (n,R) if and only if there are n distinct reconciliations at distance
d from T which contain event v, and R is one such reconciliation. Therefore, a
polynomial time method for computing reconciliation counts allows us to find a
2-approximation to k-centers for MPRs.

4 Computing the Reconciliation Count Function

In this section, we give an algorithm for computing the reconciliation count
function, CountT ,v : Nk → N. The algorithm uses three basic operations: sum,
convolution, and shift. Let f and g be functions from Zk to N. The sum, h = f+g,
is defined by

h(n) = f(n) + g(n)

The convolution, h = f ∗ g is defined by

h(n) =
∑

m∈Zk

f(m)g(n−m)

The shift, h = f �m for some m ∈ Zk is defined by

h(n) = f(n−m)

In addition, for a given d ∈ Zk the function δd : Zk → N is defined by

δd(d) = 1 and δd(n) = 0 for n 6= d

Clustering DTL Reconciliations 11

Finally, for a vertex v in the reconciliation graph G and a MPR T , we define the
function D(v, T) as follows:

D(v, T) =

−1 if v ∈ E(T)

1 if v /∈ E(T) and v ∈ E(G)

0 if v /∈ E(G)

For T = {T1, . . . , Tk}, we define D(v, T) = [D(v, T1), · · · , D(v, Tk)].
Note that while the convolution is defined using an infinite summation, in

our usage it will only take a polynomial number of non-zero values and will be
shown to be computable in polynomial time.

In Algorithm 4 we give three procedures: The main Count function for com-
puting CountT ,v which uses procedures SubCount and SuperCount. For clar-
ity, these procedures are described recursively, but the implementation (described
in the Supplementary Materials) applies dynamic programming to compute the
values bottom-up in polynomial time. The algorithm uses the sum, convolution,
shift and δd functions described above.

Algorithm 4 Reconciliation Count
1: procedure CountT (v)
2: return (SubCountT (v) ∗ SuperCountT (v))�

[
|E(T1)|, . . . , |E(Tk)|

]
3:
4: procedure SubCountT (v)
5: if v is a leaf of G then
6: return δ[−1,−1,...,−1]

7: if v is a mapping vertex then
8: for each child ci of v do
9: fi ← SubCountT (ci)

10: return
∑

i fi

11: if v is an event vertex then
12: if v has one child c then
13: return SubCountT (c)� D(v, T)
14: else v has two children c1, c2
15: return (SubCountT (c1) ∗ SubCountT (c2))� D(v, T)

16:
17: procedure SuperCountT (v)
18: if v is a root of G then
19: return δ[0,0,...,0]

20: if v is a mapping vertex then
21: for each parent pi of v do
22: fi ← SuperCountT (p)� D(p, T)
23: if v has a sibling s under pi then
24: fi ← fi ∗ SubCountT (s)

25: return
∑

i fi

26: if v is an event vertex then
27: p← the parent of v
28: return SuperCountT (p)

Theorem 2. Given a reconciliation graph G for a DTL problem instance and a
set T of k MPRs, the procedure CountT (v) in Algorithm 4 correctly computes
the reconciliation count function.

12 A. Ozdemir et. al

Let n denote the larger of the size of the gene tree and the size of the species
tree in a DTL instance and let k be a fixed constant representing the size of the
representative set T .

Theorem 3. The worst-case time complexity of Algorithm 4 is O(nk+3 log n).

Theorem 4. The worst-case time complexity for performing I iterations of the
k-medoids algorithm is O(Ink+3 log n).

Theorem 5. The worst-case time complexity of the k-centers algorithm is
O(nk+3 log n).

Proofs of these theorems as well as experimental results are available in
Supplementary Materials at www.cs.hmc.edu/~hadas/supplement.pdf.

5 Conclusion

In this paper we have studied the problem of clustering the exponentially large
space of MPRs in order to find a small number of representative reconciliations
and to better understand the structure of MPR space. We have defined a recon-
ciliation count function, shown that it can be computed in polynomial time, and
demonstrated how this function can be used to implement some well-known clus-
tering algorithms. These results can be extended to other clustering algorithms
and to reconciliations whose cost is within some bound of MPR cost.

Finally, there are a number of promising directions for future research. First,
while the reconciliation count algorithm runs in polynomial time for any constant
k, the running time of O(nk+3 log n) becomes impractical for large values of k.
While our initial experimental results suggest that small values of k are likely to
be of greatest interest, it may be possible to compute the reconciliation count
function more efficiently. Second, the reconciliation count function described here
appears to have broad utility in implementing other clustering methods and
algorithms and in computing a variety of statistics on clusterings of MPR space.
While our experimental results demonstrate the viability of clustering, systematic
empirical studies are needed to better understand what clusterings can reveal
about the structure of MPR space.

Acknowledgements

This work was funded by the U.S. National Science Foundation under Grant
Numbers IIS-1419739 and 1433220. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science Foundation. The authors
wish to thank Yi-Chieh Wu and Mukul Bansal for valuable advice and feedback.

Clustering DTL Reconciliations 13

References

1. Bansal, M.S., Alm, E.J., Kellis, M.: Efficient algorithms for the reconciliation
problem with gene duplication, horizontal transfer and loss. Bioinformatics 28(12),
i283–i291 (2012)

2. Bansal, M.S., Alm, E.J., Kellis, M.: Reconciliation revisited: handling multiple
optima when reconciling with duplication, transfer, and loss. In: Research in
Computational Molecular Biology. pp. 1–13. Springer (2013)

3. Charleston, M.A., Perkins, S.L.: Traversing the tangle: algorithms and applications
for cophylogenetic studies. Journal of Biomedical Informatics 39(1), 62–71 (2006)

4. Conow, C., Fielder, D., Ovadia, Y., Libeskind-Hadas, R.: Jane: A new tool for
cophylogeny reconstruction problem. Algorithms for Molecular Biology 5(16) (2010)

5. David, L.A., Alm, E.J.: Rapid evolutionary innovation during an archaean genetic
expansion. Nature 469, 93–96 (2011)

6. Doyon, J.P., Scornavacca, C., Gorbunov, K.Y., Szöllősi, G.J., Ranwez, V., Berry,
V.: An efficient algorithm for gene/species trees parsimonious reconciliation with
losses, duplications and transfers. Comparative Genomics 6398, 93–108 (2011)

7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York, NY, USA (1979)

8. González, T.: Clustering to minimize the maximum intercluster distance. Theoretical
Computer Science 38, 293 – 306 (1985)

9. Ma, W., Smirnov, D., Forman, J., Schweickart, A., Slocum, C., Srinivasan, S.,
Libeskind-Hadas, R.: DTL-RnB: Algorithms and tools for summarizing the space
of DTL reconciliations. IEEE/ACM Trans. on Comp. Bio and Bioinfo. (2016)

10. Nguyen, T.H., Ranwez, V., Berry, V., Scornavacca, C.: Support measures to estimate
the reliability of evolutionary events predicted by reconciliation methods. PloS one
8(10), e73667 (2013)

11. Park, H.S., Jun, C.H.: A simple and fast algorithm for k-medoids clustering. Expert
Systems with Applications 36(2), 3336–3341 (2009)

12. Scornavacca, C., Paprotny, W., Berry, V., Ranwez, V.: Representing a set of
reconciliations in a compact way. Journal of Bioinformatics and Computational
Biology 11(02), 1250025 (2013), pMID: 23600816

13. Than, C., Ruths, D., Innan, H., Nakhleh, L.: Confounding factors in hgt detection:
statistical error, coalescent effects, and multiple solutions. Journal of Computational
Biology 14(4), 517–535 (2007)

14. To, T.H., Jacox, E., Ranwez, V., Scornavacca, C.: A fast method for calculat-
ing reliable event supports in tree reconciliations via pareto optimality. BMC
Bioinformatics 16, 384 (2015)

15. Tofigh, A.: Using Trees to Capture Reticulate Evolution: Lateral Gene Transfers
and Cancer Progression. Ph.D. thesis, KTH Royal Institute of Technology (2009)

16. Tofigh, A., Hallett, M.T., Lagergren, J.: Simultaneous identification of duplications
and lateral gene transfers. IEEE/ACM Trans. on Comp. Bio and Bioinfo. 8(2),
517–535 (2011)

