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Abstract. Phylogenetic tree reconciliation is a widely-used method to
understand gene family evolution. For eukaryotes, the duplication-loss-
coalescence (DLC) model seeks to explain incongruence between gene
trees and species trees by postulating gene duplication, gene loss, and
deep coalescence events. While efficient algorithms exist for inferring
optimal DLC reconciliations, they assume that only one individual is
sampled per species. In recent work, we demonstrated that with additional
samples, there exist gene tree topologies that are impossible to reconcile
with any species tree. However, our algorithm required the gene tree to
be binary whereas, in practice, gene trees are often non-binary due to
uncertainty in the reconstruction process. In this work, we consider for
the first time reconciliation under the DLC model with non-binary gene
trees. Specifically, we describe an efficient algorithm that takes as input an
arbitrary gene tree with an arbitrary number of samples per species and
either (1) determines that there is a valid reconcilable binary resolution
of that tree and constructs one such resolution or (2) determines that
there exists no valid reconcilable binary resolution of that tree. Our work
makes it possible to systematically analyze non-binary gene trees and
will help biologists identify incorrect gene tree topologies and thus avoid
incorrect evolutionary inferences.

Keywords: phylogenetics, reconciliation, gene duplication and loss, coa-

lescence, non-binary trees

1 Introduction

Phylogenetic tree reconciliation is a fundamental technique for understanding the
evolutionary histories of genes found across a set of species. Given a gene tree,

* These authors contributed equally to this work.
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species tree, and the association between their leaves, a reconciliation postulates
evolutionary events to explain the incongruence, or topological differences, be-
tween those trees. These events may include gene duplication [21], gene loss [2],
horizontal gene transfer [20], and incomplete lineage sorting [11], among others.
Accurate reconciliations can provide important insights into centrally important
questions on gene evolution and the introduction of new gene functions [16, 30].

Reconciliations rely on an underlying evolutionary model. Some widely-used
models include the duplication-loss (DL) model [14,22,7, 35,15, 6,1, 24], which
allows for gene duplication and gene loss; the duplication-transfer-loss (DTL)
model [9, 10, 13,29, 3, 8], which considers horizontal gene transfers as well; and the
multispecies coalescent (MSC) model [19, 23,31, 33|, which allows for incomplete
lineage sorting through deep coalescence. However, the DL and DTL models
cannot address population effects, and MSC models cannot address paralogous
gene families. Thus, each model has limited accuracy and applicability.

Recently, a unified duplication-loss-coalescence (DLC) model was proposed
that combines the DL and MSC models [25], thereby addressing the most common
events in eukaryotic gene evolution. Given a single haploid sample per species,
two algorithms exist for solving the DLC reconciliation problem: DLCoalRecon
finds the reconciliation with highest posterior probability [25], and DLCpar finds
a most parsimonious reconciliation (one that minimizes the total cost of the
constituent events) [32]. More recently, we extended the DLC model to allow for
multiple samples per species and demonstrated that these multiple samples impose
additional constraints such that gene trees may have no feasible reconciliation.
Such infeasible gene trees can occur, for example, due to noisy sequencing,
reconstruction error, or violations of model assumptions. To address this problem,
we presented a polynomial-time algorithm for determining reconciliation feasibility
of gene trees under the DLC model [26].

A significant limitation of these formulations is that they require the gene
and species trees to be binary. In practice, species trees for several clades are
binary since their reconstruction can benefit from well-behaved gene families
as well as multigene phylogeny construction methods [12,4]. When a species
tree is non-binary, the non-binary nodes, or polytomies, are often “hard” and
represent the simultaneous speciation of a common ancestor into multiple species.
In contrast, gene trees are often non-binary due to lack of phylogenetic signal [27].
Their polytomies are “soft” in the sense that better data would allow us to resolve
such nodes to yield a binary gene tree. Note that the number of binary resolutions
is exponential in the number of non-binary nodes and their maximum out-degree.
When given a non-binary gene tree and a binary species tree, reconciliation
algorithms under the simpler DL and DTL models often seek to find a binary
resolution of the gene tree that minimizes the reconciliation cost [5, 18,34, 17].

In this work, we consider the problem of binary resolution under the DLC
model with multiple samples per species. We present an efficient new algorithm
that finds a valid binary resolution when such a resolution exists. Note that a
brute-force approach of enumerating each binary resolution and testing it for
reconcilability would take exponential time and thus be impractical. Using our
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algorithm, we also prove that there exist non-binary gene trees for which there is
no valid binary resolution. This work generalizes existing results on reconciliation
feasibility of binary gene trees and is thus an important step towards a full
reconciliation algorithm for non-binary gene trees under the DLC model.

2 Background

2.1 Reconciliation Feasibility

We previously studied reconciliation feasibility under the DLC model [26] and
review that work here.

We start with some basic tree and graph definitions. Let T' be an unrooted,
full, binary tree! with a set V(T') of nodes (or vertices) and a set E(T') of branches
(or edges). Let L(T) C V(T) denote the set of leaves, and for nodes u and v,
let path(u,v) denote the set of branches along the unique simple path from u
to v in 7. Similarly, let G = (V(G), E(G)) be an undirected graph with a set
V(G) of vertices and a set E(G) of edges. Let C(G) denote the set of connected
components of G, where C' € C(G) is a subgraph of G denoting a single connected
component.

A species tree S is a tree that depicts the evolutionary history of a set of
species, and a gene tree G is a tree that depicts the evolutionary history of a
set of genes sampled from these species. Gene trees may be either binary or
non-binary while the species tree is always assumed to be binary. A species leaf
map Le : L(G) — L(S) associates each leaf of G with the leaf of S in which that
gene is found. Note that more than one gene may be sampled from the same
species; these genes could correspond to either multiple loci or multiple haploid
samples. A gene tree is associated with a finite locus set L of species-specific
loci that have evolved within the gene family. A locus leaf map Le* : L(G) — L
associates each leaf of G with the species-specific locus at which that gene is
found. For example, two genes map to the same species-specific locus if they are
mapped to the same location on a reference genome. Note that the relationship
between loci in different species is assumed to be unknown. Furthermore, there
may exist copy number variations resulting in different samples from the same
species containing different loci.

The labeled coalescent tree (LCT) formalizes the notion of a reconciliation in
the DLC model [32]. In brief, the LCT is an annotated gene tree that simultane-
ously describes the gene tree topology and its reconciliation to the species tree.
As a full description of the LCT is not necessary to characterize the reconciliation
feasibility problem, we present only the necessary concepts and terminology.
First, duplications occur along branches in the LCT, denoting that the locus has
changed at some point along the branch. Second, the LCT labels each node and
branch with the locus in which the gene evolves; for branches with a duplication,
one side of the branch (before the duplication) is labeled with the original locus
and the other side (after the duplication) with the new locus.

! Branch lengths are not used in this work, so a tree always refers to a tree topology.
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Multiple species-specific loci may be related through speciation events alone
and thus correspond to the same evolutionary locus. This notion is formalized
and used to define reconcilable gene trees as follows:

Definition 1 (Locus Class). Let a collection LC = {C;} of nonempty sets
form a partition over I such that each locus | € 1L belongs to a single locus class
C; e LC.

Definition 2 (Reconcilable Gene Tree?). Given gene tree G, species leaf
map Le, and locus leaf map Le’, G is said to be reconcilable if there exists some
map L: L(G) U E(G) — LC of each leaf and edge of the gene tree to a single
locus class, such that for each pair of genes g1 € L(G), g2 € L(G), g1 # g2, L is
subject to the following constraints:

1. If Le*(g1) = Le"(g2), then L(g1) = L(g2) and for each e € path(gy,g2),
L(e) = L(g1). (Allele Constraint)

2. If Le(g1) = Le(ga) but Lef(g1) # Lel(g2), then L(g1) # L(g2). (Paralog
Constraint)

Constraint 1 ensures that genes from the same species-specific locus are assigned
the same locus class and, because duplications create a unique new locus, that
genes and edges assigned the same locus class form a subtree of the gene tree.
Constraint 2 ensures that genes from paralagous loci are assigned different locus
classes. Note that reconcilability of the gene tree depends on its topology and the
mapping of its leaves to the leaves of the species tree and to species-specific loci,
but reconcilability does not depend on the actual topology of the species tree.

Problem 3 (Reconciliation Feasibility). Given gene tree G, species leaf map Le,
and locus leaf map Le”, determine whether G is reconcilable.

The reconciliation feasibility problem can be solved using two structures, the
Partially Labeled Coalescent Tree (PLCT, Figure 1B) and the Locus Equivalence
Graph (LEG, Figure 1C), defined formally below:

Definition 4 (Partially Labeled Coalescent Tree). Let P(IL) denote the
power set of L. Given G and Le*, the partially labeled coalescent tree (PLCT)
is a map P : E(G) — P(L) constructed as follows: Consider each pair of genes
g1 € L(G), g2 € L(G), g1 # g2 such that Le®(g1) = Le*(g2) = I. For each gene
tree edge e € path(g1, g2), add l to P(e).

Definition 5 (Locus Equivalence Graph). Given a PLCT P for G and
Le®, the locus equivalence graph (LEG) is a graph G constructed as follows: Set
V(G) =1L. For each gene tree edge e € E(G) and each pair of loci l; € P(e),ls €
7)(6), l1 7é lg, add (ll, lg) to E(Q)

The PLCT captures the allele constraints for each species-specific locus by labeling
edges of the gene tree with the species-specific locus or loci to which the edge
must belong. If an edge is labeled with multiple loci, these multiple loci must
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Fig. 1. Reconciliation feasibility for binary gene trees. (A) The sampled species
(capital letters), loci (numbers), and haploid samples (roman numerals). We assume
knowledge of the species-specific locus from which each gene is sampled. Within a species,
genes at the same locus (across multiple samples must be alleles), and genes at different
loci (regardless of sample) must be paralogs. (B) For a gene tree (black), the PLCT
uses alleles to label branches along which no duplications are allowed (colored lines).
(C) The LEG contains one node per species-specific locus and encodes overlapping
labels in the PLCT as edges in the LEG. (D) A gene tree has a feasible reconciliation
if and only if every connected component of the LEG contains no paralogs, that is, no
more than one locus from each species. [Figure and caption adapted with permission
from Rogers et al. [26].]

correspond to the same locus class. This equivalency constraint is captured as an
edge between loci in the LEG. Rogers et al. [26] provide a formal description of
the algorithm for constructing the PLCT and LEG, describe an optimization,
and derive their time complexities of O(nk) and O(nk?), respectively, where
n = |L(G)| and k = |L|. Next, paralog constraints are used to define reconcilable
LEGs:

Definition 6 (Reconcilable Locus Equivalence Graph). For each | € L,
let map Le® : L. — L(S) associate each species-specific locus with the leaf of
S in which the locus is found. That is, for each g € L(G), if | = Le*(g), then
LeS(l) = Le(g). Given G, Le, and Le*, a LEG G for G and Le® is said to be
reconcilable if for each C € C(G) and for each s € L(S), there exists no more
than one locus | € C such that Le®(l) = s.

The LEG enforces the paralog constraints for each species by requiring that
each connected component contain no more than one locus from any species.
LEG reconcilability can be determined in O(k3) time and related to gene tree
reconcilability [26]:

Theorem 7. A gene tree is reconcilable if and only if its locus equivalence graph
is reconcilable.
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Fig. 2. Reconciliation feasibility for non-binary gene trees. A multifurcating
gene tree M and two binarizations B; and Bs. Superscripts indicating haploid samples
have been omitted. For B, a; and a2 can be mapped to distinct locus classes, so the
gene tree is reconcilable. For Bz, a1 and a2 must be mapped to the same locus class,
but a; and a2 are paralogs, so the gene tree is irreconcilable.

3 Reconciliation Feasibility for Non-Binary Gene Trees

In the previous section, all definitions and theorems applied only to binary gene
trees. In this section, we consider the reconcilability of non-binary gene trees.

Let M be a non-binary, or multifurcating, gene tree. Each node with more
than two children is called a multifurcation. Without loss of generality, and to
simplify our discussion, we root M arbitrarily along any branch. A binarization
B(M) of M is a binary tree in which each multifurcation v with & > 2 children
is replaced by a binary tree rooted at v with k leaves. These k leaves represent
the k original children of v and thus may themselves be the roots of subtrees
with their own descendants. The binary tree rooted at v is said to resolve the
multifurcation, and we call that binary tree an expansion tree for v.

We now formalize the notion of reconcilable multifurcating gene trees:

Definition 8. A multifurcating gene tree M is said to be reconcilable if there
exists a binarization B(M) of M that is reconcilable.

Note that for a multifurcating gene tree, not all binarizations may be reconcilable.
For example, two binarizations may induce different paths between two genes
such that allele and paralog constraints are satisfiable in one binarization but not
in another (Figure 2). Rather than enumerate all binarizations and evaluate each
for reconcilability, we propose to evaluate the reconcilability of multifurcating
gene trees directly.

We start by applying the definitions of the PLCT and LEG (Definitions 4
and 5) directly to multifurcating gene trees. However, Theorem 7, which relates
reconcilability of gene trees to reconcilability of LEGs requires that the gene tree
be binary.? Our goal is to extend Theorem 7 to multifurcating gene trees:

Theorem 9. A multifurcating gene tree is reconcilable if and only if its locus
equivalence graph is reconcilable.

For a multifurcating gene tree M, let the associated LEG be Gj;. We then
reformulate Theorem 9 as two separate theorems, one for each direction of the
“if and only if” statement:

3 The proof considers only the single unique path between two genes in a binary tree.
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Theorem 9a. If Gy is reconcilable, then there exists a binarization B(M) of
M that is reconcilable.

Theorem 9b. If Gy is irreconcilable, then there exists no binarization B(M)
of M that is reconcilable.

3.1 Proof of Reconcilability

For each locus [ € L, there exists a locus tree* which is the subtree of M whose
leaves contain that locus. Let 7(M) denote the root of M, and for u € V(M),u #
r(M), let the parent edge of u be the edge from u to its parent. Consider a node
u and its parent edge e. If edge e is not used by any locus trees, then u is said
to be uncontained. However, if one or more locus trees contain edge e, then, by
definition, the set of those loci are in a single connected component C' of Gy,
and we say that v is contained by C.

Given a non-binary tree M (Figure 3A), we want to efficiently determine
whether or not there exists a binarization B(M) of M that is reconcilable. We
propose the following binarization algorithm:

1. For each multifurcation v € V/(M), partition its children by the connected
components in Gy; that contain them, placing uncontained children arbitrarily
(Figure 3B).

2. For each set in the partition, construct a sub-expansion tree by attaching all
the children to the leaves of an arbitrary binary tree with the same number
of leaves as children in the set (Figure 3C).

3. Join all sub-expansion trees together with another arbitrary binary tree of
appropriate size, called the connecting tree, by attaching the roots of the
sub-expansion trees to the leaves of the connecting tree. This results in our
expansion tree for v (Figure 3C).

Constructing an expansion tree for each multifurcating node in M, in this way,
results in our binarization B(M). Note that since some aspects of the construction
permit arbitrary decisions (e.g., placement of uncontained nodes, construction of
the connecting tree), the resulting binarization is not unique.

We now relate Gys for M with Gpap) for B(M).

Lemma 10. Let v be a multifurcating vertex in M, and let B(M) be a binariza-
tion constructed by our algorithm. In B(M), if a locus tree L for locus  contains
an edge in the connecting tree of v, then it contains the parent edge of v.

Proof. Suppose L contains an edge in the connecting tree of v but does not
contain the parent edge of v. Then, by construction of B(M), L has leaves gy
and gs in two distinct sub-expansion trees of v. Therefore, in the original tree M,
the path from g; to go passes through v and thus passes through two children
of v, denoted v; and v;. Since g; and go are in distinct sub-expansion trees, it
follows that v; and v; are each contained by a distinct connected component in

* Note that this locus tree is distinct from the locus tree of Rasmussen and Kellis [25].
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Fig. 3. Reconciliation feasibility for non-binary gene trees. (A) A multifurcat-
ing gene tree M and its locus equivalency graph Gur. Superscripts indicating haploid
samples have been omitted. Nodes with parent edges e; and e4 are contained by con-
nected component C'1, and nodes with parent edges e2 and es are contained by connected
component C3. (B) The partition of children from multifurcating node v. The first
set includes the children contained by connected component C1, and the second set
includes the children contained by connected component Cs. (C) Sub-expansion trees
(solid) joined through a connecting tree (dashed) to yield an expansion tree for v.
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G- But, by definition of Gy, the path from g; to g» implies that v; and v; are
covered by a single connected component in Gy . ad

Lemma 11. Let T be any binarization of M. Let I be a locus and let Ly, and
Ly be the locus trees for l in M and T, respectively. The edge set of Lt is exactly
the edge set of Ly, with the addition of a subset of edges from expansion trees.

Proof. Note that Lj; is the union of paths between all pairs of leaves with locus
[ in M, and similarly, Ly is the union of paths between all pairs of leaves with
locus ! in T'. Every path in M corresponds to a unique path in T where all
internal nodes are expanded into a path through the corresponding expansion
tree. By the uniqueness of paths in trees, L is exactly Ly, augmented with the
edges traversed in the expansion trees. a

For graph G and two nodes u,v € V(G), we say that v and v are connected if
they are in the same connected component and disconnected otherwise.

Lemma 12. Let ! and k be a pair of disconnected loci in Gyy. Then, there is no
edge between | and k in Gp(ar)-

Proof. Let T'= B(M). Consider any ! and k in different connected components
in Gp; and any multifurcation v in M. Let Lj; and Kj; denote the locus trees
for [ and k, respectively, in M, and let Ly and K7 denote the corresponding
locus trees in T'.

Since [ and k are in different connected components of Gy, at least one of
Ly or Ky does not use the parent edge of v. By Lemma 11, the edge set of Ly,
and K are subsets of Ly and K, respectively. Therefore, at least one of Ly or
K7 does not use the parent edge of v. Therefore, by Lemma 10, at most one of
Ly or K contains an edge in the connecting tree for v in T'.

Next, we claim that if [ and k are in different connected components C; and
Cy in Gy, then Ly and K7 do not intersect in any sub-expansion tree in T'.
Suppose Lt and K intersect inside a sub-expansion tree of some vertex v. Since
C; and C}, are in different components in Gy, this intersection must happen at
an edge that was introduced when joining the children of v into sub-expansion
trees; these edges correspond to edges from v to its children in M. Thus, in M,
Ly and K); must share an edge and are thus in the same component, which
contradicts our assumption.

We have established that if [ and k are in different connected components in
G, then they cannot share an edge in either a connection tree or a sub-expansion
tree in T'. Therefore, by Lemma 11, [ and k cannot share any edge in 7" and thus
there is no edge between them in Gr. O

Finally, we prove Theorem 9a, which has been restated using B(M) con-
structed by our algorithm.

Theorem 9a. If Gy is reconcilable, then Gpary is reconcilable.
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Proof. Let T = B(M). It suffices to show that if [ and k are in different connected
components in Gy, then they are in different connected components in Gr,
implying that if Gy, is reconcilable, then Gr is reconcilable.

Assume by way of contradiction that loci [ and k are disconnected in M but
connected in 7T'. Then, there exists a path p from ¢ to k in Gp. Let (u,v) be the
first edge on p such that [ and u are in the same connected component in Gy, but
u and v are in different connected components in Gps. From Lemma 12, (u,v)
cannot be an edge in Gr, contradicting the assumption. ad

Theorem 9a implies a polynomial-time algorithm for both determining if a
non-binary gene tree is reconcilable and, if so, constructing one reconcilable bina-
rization. Recall that, for n = |L(G)| and k = |L|, it takes O(nk) +O(nk?) +O(k?)
time to construct the PLCT and LEG and then test the LEG for reconcilability.
For the binarization process, let ¢ denote the maximum number of children over
all multifurcations in the gene tree, and m denote the total number of multifur-
cations. The time required to build the expansion tree for each multifurcation
is linear in ¢, and each multifurcation can be resolved independently. Thus, the
total complexity of the binarization process is O(em).

For comparison, the number of distinct binary resolutions for multifurcation
v with k, children is N, = (2k, — 3)!!. A brute-force approach that enumerates
each binarization and combines them would therefore result in Hvev( Myky>2 No
expansion trees, making it infeasible to enumerate and test each one for feasibility.

3.2 Proof of Irreconcilability

Theorem 9b. If Gy is irreconcilable, then there exists no binarization B(M)
of M that is reconcilable.

Proof. Let T be an arbitrary binarization of M. By Lemma 11, any pair of locus
trees Ly and K in T contain all the edges of the corresponding locus tree, Ly,
and Ky, in M. Thus, any two loci that are connected by an edge in Gj; must
also have an edge in Gr. O

It is not difficult to show that there exist non-binary gene trees that are not
reconcilable.’

4 Discussion

We have presented an efficient algorithm that evaluates an arbitrary gene tree
topology with an arbitrary number of samples per species under the DL.C model
and either (1) determines that there is a valid reconcilable binary resolution of
that tree and constructs one such resolution or (2) determines that there exists
no valid reconcilable binary resolution of that tree.

5 For example, in Figure 3, swapping leaves labeled ay with leaves labeled ¢; would
result in an irreconcilable LEG and thus a multifurcating gene tree for which there
exists no reconcilable binarization.
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In previous work [26], we reconstructed RAXML [28] gene trees, collapsed
poorly-supported branches to yield non-binary gene trees, and analyzed the
reconcilability of the associated LEG. Our work here allows us to directly relate
LEG reconcilability to gene tree reconcilability. In particular, while gene tree
reconcilability is affected by poorly-supported branches, even multifurcating gene
trees with well-supported branches can be infeasible.

One limitation of our work is that given a non-binary gene tree, we are not
guaranteed to construct an optimal binary resolution. That is, our binarization
may not yield a gene tree with the lowest reconciliation cost under a parsimony
framework. But our work suggests one possible approach. We propose to explore
the space of reconcilable resolutions compared to the space of all resolutions.
If, in-practice, most non-binary gene trees have a single or small number of
reconcilable resolutions, it would imply that we could simply enumerate the
resolutions, then apply existing reconciliation algorithms for binary trees.%

For irreconcilable gene trees, a possible research direction is to investigate
error-correction algorithms. Such an algorithm could find the minimum number of
topological rearrangements needed to yield a reconcilable gene tree. An alternative
is to remove the minimum number of sampled individuals and explore possible
patterns among the removed individuals. Such patterns could provide insight
into whether certain populations are correlated with error and therefore more
susceptible to problems elsewhere in a phylogenomic pipeline.
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