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Abstract. Content authoring for conversations is a limiting factor in
creating verbal interactions with intelligent virtual agents. Building on
techniques utilizing semi-situated learning in an incremental crowdwork-
ing pipeline, this paper introduces an embodied agent that self-authors
its own dialog for social chat. In particular, the autonomous use of crowd-
workers is supplemented with a generalization method that borrows and
assesses the validity of dialog across conversational states. We argue that
the approach offers a community-focused tailoring of dialog responses
that is not available in approaches that rely solely on statistical meth-
ods across big data. We demonstrate the advantages that this can bring
to interactions through data collected from 486 conversations between a
situated social agent and 22 users during a 3 week long evaluation period.

Keywords: Verbal chat; social robot; repeated interactions; borrowing
dialog

1 Introduction

Traditional dialog systems rely on domain experts to manually define structure,
rules, and goals to navigate through conversations, e.g., [2], imposing consider-
able costs for content authoring. Hand-crafted dialog knowledge also risks the
introduction of personal bias – while system builders may have absolute certainty
about what the agent can do, they may not fully anticipate what people will say
to effect action or what the agent should say to keep people on task. As a result,
statistical techniques with big data have been an increasing focus for learning
dialog without the content authoring expense [11,12]. Not surprisingly, statisti-
cal techniques are most successful when the distribution of language phenomena
in the underlying data match the distribution of language phenomena in the
desired interaction. Such approaches are promising for a number of important
applications, however they do not address the problem of efficiently authoring
content when prior corpora do not exist. This work makes a contribution toward



a scenario that remains a challenge for purely statistical approaches: conversa-
tion situated in natural environments with relationships that persist over time.

The current work seeks to explore this scenario by creating a Persistent In-
teractive Personality (PIP) that can engage in verbal social chat interactions as
part of a community. Although the particular agent we focus on here, Kevin, en-
gages only in social chat, the mechanisms used for self-authoring dialog build on
existing techniques for task-driven discourse introduced in an earlier PIP; specif-
ically, the generation of narrative descriptions of future task situations to elicit
dialog lines from crowdworkers [6]. Kevin learns new dialog through face-to-face
interaction and the crowdworking pipeline, then generalizes the conditions of
use by borrowing across dialog states. In the following, we briefly review previ-
ously described capabilities as they occur in Kevin, then focus on when and how
borrowing occurs as a function of experience. The paper contributes a descrip-
tion of the implemented system, with an evaluation used as a proof-of-concept.
We demonstrate that the technique has a number of advantages for users dur-
ing interactions, particularly in the context of repeated interactions within a
community. In addition, we posit that the combination of mechanisms offers
analysis opportunities for understanding natural language that are not possible
with purely statistical approaches.

2 Related Work

Manual definition of dialog structure, rules or action space [2,13] incurs high cost
and tends to work well when domains are small, i.e., task-oriented dialog such
as when an agent has to guide users in a shopping mall [4] or interact in limited
virtual worlds [1]. The less cumbersome and increasingly popular approach to
learning dialog structure is to use machine learning techniques. Machine learning
techniques are commonly used to translate user input directly into a system
response [11, 12]. Models are typically trained on huge amounts of data that
is difficult to adapt to specific situations. For example, a model trained using
hundreds of movie scripts is unlikely to be applicable when talking to a close
friend in an office setting. Such systems may also have problems in generating a
variety of responses, and in utilizing history over repeated interactions with the
same users. As a solution, Mori and Araki [9] propose a method that combines a
statistical model with rule-based and transition-oriented approaches. Each of the
three methods seeks to cover for shortcomings in another. For example, the rule-
based element generates appropriate responses, but over a narrow set of inputs,
whereas the machine learning element is broad but sometimes inappropriate in
response. All three methods are employed, with utterance selection based on an
approximation of naturalness and the likelihood of conversation continuation.
The approach we take is similar in combining both statistical and non-statistical
methods, but supplants rule authoring with a kind of learning from examples
via autonomous deployment of human crowdworkers.

Commercial approaches that mix rule-based systems with machine learning
approaches from leading artificial intelligence companies are also starting to



power several question/answering chatbots for specific domains. However, in
socially-oriented conversations where there are various ways to address user input
depending on the current situation, these systems are still not very capable. For
example, in response to “Good morning!”, one may say “Good morning. My
name is ” (a new hire greets a colleague), “How was your weekend?” (a friend
greets another on Mondays), or simply “Hi!” (one greets a stranger on the street).
Accounting for the context of the interaction becomes an important part of the
content to be generated; in the work presented here, we use an explicit dialog
state to explore and generalize language use across contexts, as defined by our
state variables.

In social chat domains, where people generally possess sufficient knowledge to
continue a conversation, we suggest that crowdworkers could be a useful resource
to tailor the responses. The approach taken in [5] also uses crowdworkers but in a
‘live’ interaction, providing dialog responses to users in the moment. The content
is ephemeral, requiring continual access to crowdworkers and the associated cost.
It is also likely that to sustain interactions with users, some use of user history
will be required to build rapport, as suggested by [7]. Guo et al. [3] describe a
system where a concierge robot systematically improves its dialog capabilities
in a set of categories. The robot automatically updates thresholds to decide
when to respond to a user or when to ask for clarification. After asking for
clarification if the user’s utterance can still not be understood, it is marked
for further processing. In these cases, the development team or crowdworkers
can help the system to add new utterances to existing classes or to create new
ones. This work is similar to ours as we propose an agent that can learn from
crowdworkers, that engages in face to face interactions and that draws on prior
experience to select dialog responses. However, our work differs in several key
aspects. Our agent is not a question/answering system, but is solely interested
in social chit chat. We therefore do not restrict the categories that users can
talk about; the dialog is completely open. Also, it does not ask the users or the
development team for additional clarification, but improves its dialog capabilities
in an autonomous manner using generalization or crowdworkers as necessary.

3 System Design

The goal for Kevin was to create an embodied agent capable of engaging in social
chit-chat over repeated interactions with users in an office. When a valid response
was available, he would continue a conversation; otherwise, the conversation
would fail. The failure point was then used to drive expansion and acquire a
response, so failure never occurred twice at the same point. Kevin was introduced
to our user community as a casual acquaintance at work. Users were requested to
be natural but ‘benevolent’ in conversations, i.e., not to try to intentionally cause
dialog failure. This section will describe the system implementation, including
the two methods used for generating dialog, the instantiation of the agent, and
the technologies used to enable smooth human-agent interactions.
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Fig. 1. System diagram showing key components and the flow of information between
them. The dialog components are independent of the agent instantiation.

3.1 AMT Expansion

Kevin’s dialog graph was learned both by the agent’s autonomous deployment
of a pipeline of Human Intelligence Tasks (HITs) on Amazon Mechanical Turk
(AMT) and through face-to-face interactions with users. The full AMT pipeline
consisted of three stages: generating a line of dialog, rating the line, and eval-
uating the line as a conversational ending (as in [6]). Crowdworkers’ decisions
were contextualized by a story narrative that described some or all of the agent’s
state and up to 5 lines of previous dialog (details below). Dialog graph nodes
that arose from face-to-face interaction did so either through direct addition of
an Automatic Speech Recognition (ASR) transcription or by borrowing, both
described more fully below and in Fig. 2. Because each source could introduce
errors – due to poor ASR or inappropriate generalization – nodes that arose
from fully-situated face-to-face interaction were evaluated for quality control by
Kevin’s autonomous deployment of the latter two portions of the AMT pipeline.

The initial dialog graph was generated by situating AMT workers with a
story narrative that conveys the values of a small number of state variables:
time of day, day of week, and familiarity. For example, “Mai is a friendly person
who enjoys her job in an office downtown. It’s Wednesday afternoon. Kevin
and Mai have never met. They run into each other at the office”. The values
for the variables are as follows: time of day - morning/afternoon; day of week
Monday/Wednesday/Friday5; familiarity: never met/known each other for a few
weeks. The state and number of situational features was intentionally small
in order to be explicit in representation, enabling straightforward attribution
of changes in the graph. All names in the exposition were changed to protect
participant anonymity.

To create the initial graph, root nodes were generated for all combinations of
the state variables. Then, each root node was expanded breadth-first by repeated

5 Pilot studies informed us that this constituted a minimal set of states to begin social
chat with some linguistic variety. These studies also indicated that Tuesday and
Thursday contained similar language to Wednesday, so the state space was reduced
and these days would resolve to using the state of Wednesday.



use of the AMT pipeline with one node randomly selected per level as the graph
grew, until one path of depth 9 existed for each root. Each HIT was sent to
5 independent crowdworkers at each stage of the pipeline. Authored lines that
were above the quality threshold given the editors’ ratings were grouped into a
single node if they had near-identical semantic similarity scores (see below). This
grouping both helps to provide linguistic variation when the agent is speaking
and greater coverage of the input when listening.

Nodes contain dialog and the connections between nodes represent confirmed
continuation pathways allowing dialog behavior to emerge via graph traversal.
When approached, Kevin randomly chooses whether to initiate a conversation or
wait, but uses the same graph independent of speaking and listening roles. Thus,
the simplest form of generalization occurs when Kevin acquires and speaks lines
it earlier heard from a user, in situ. A conversation in which Kevin said, “How
you doing?” and heard “I’m good, how about you?” as a reply, may later produce
the reply “I’m good, how about you?” to the human’s “How’s it going today?”.
Given multiple options for speech at a turn, a random choice of responses is made
in order to encourage growth of the graph (a strategy such as always picking the
highest rated response would force growth in some graph areas to the detriment
of others).

Kevin had 632 nodes in the initialized graph prior to beginning face-to-face
interactions. Once deployment began, all conversation failure points (i.e., no
response available yet) were marked for expansion during an overnight AMT
run so that 5 responses would be available at those points the next morning.
Thus, Kevin would progress further in the chat over time.

3.2 Dialog Borrowing and Selection

Dialog utterances can be ‘borrowed’ across state space within the graph as a form
of generalization. This is done by replicating a node and updating the vertices to
connect the copy to the previous point in the conversation. Borrows were rated
using 3 workers and were made permanent if they made sense or, if not, stored as
unusable to avoid repeating the work in the future. Although borrowing does not
introduce new language to Kevin’s repertoire, the mechanism does provide a way
to both continue the conversation in the moment and expand dialog behavior at
lower cost than a full AMT expansion. The same process is applied to utterances
added from transcribed user speech.

Borrowing is based on a calculation of semantic similarity between utter-
ances. Similarity was computed by 1− cos(θ), where θ is the angle between two
feature vectors utt1 and utt2 that represent utterances. To compute an utterance
vector representation, we started by training a Word2vec model [8] on a corpus
containing over 6,500 scripts of soap operas and TV series (approximately 43
million words). Using the Gensim package [10], we trained a Skip-gram model
– more appropriate for predicting the surrounding words in a sentence – with
window size 5 and excluding words with frequency less than 10. The extracted
feature vector for an utterance was computed by the average vectors of each
word present in that utterance, excluding the vectors of stop words such as
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Fig. 2. To select the next utterance for Kevin to say, the dialog tree is traversed
from the current node (node A in the example). Depending on the user utterance,
five scenarios are possible. Two of these result in failure (red X node), one results in
following a confirmed pathway, and the final two borrow from elsewhere in the graph
to continue the conversation. The temporary modifications (indicated through gray
dotted boxes) are marked for validation in the last two stages of the AMT pipeline.

On Monday
Kevin :  How was your weekend?
User :  It was great.
Kevin :  What did you do?
User :  Went to the movies with friends.

On Wednesday
User :  Do anything after work yesterday?
Kevin :  Went to the movies with friends.

Fig. 3. Example of how Kevin may borrow a user utterance.

“the” or “and”6. The threshold for two utterances to be considered similar was
0.6 (based on experimenter judgment of data collected from pilot studies). This
cosine similarity metric is also used to determine whether what the user says is
similar to any of the child nodes of the node used by the agent in the non-failure
cases (see Fig. 2).

Combining the borrowing technique with the existing learned graph structure
provides three possible successful routes to a response from a user utterance,
along with 2 failure routes. Whenever possible, the utterance Kevin selects as
a response is from the current context, based on traversing the graph from the
root note that instantiates that context. If the user utterance is already in that
context and it has one or more children, then Kevin will respond from that
set (Fig. 2: 2). If the utterance exists in the current context, but nothing is
similar according the the similarity metric just described, then Kevin will fail

6 We started our experiments with a pre-trained Word2vec model based on the Google-
News dataset, but the performance of that model for computing semantic similarity
between social dialog lines was substantially worse.



Fig. 4. Our agent, Kevin, in both robot (left) and mobile app (right) embodiments.

(Fig. 2: 1). Failure will also occur if the user says something that exists in another
context, but that does not have children, or if something new is said that has no
similarity to something already in the graph (Fig. 2: 5). In cases where the user
says something from the current context that has no response, but is similar to
something elsewhere in the graph with children, then a child will be borrowed
as a response (and later validated; Fig. 2: 3). In the pair of conversations in
Fig. 3, for example, a line from the user that is originally tied to the day after
the weekend is borrowed to a different portion of the week via the semantic
similarity of “What did you do?” and “Do anything after work?”.

In the final case, (Fig. 2: 4) if the user utterance does not exist in the current
context, but is similar to an utterance from another context, then the parent
and child pair can be borrowed from that context. In all conversations, Kevin
continues to select a dialog response until two simultaneous utterances (i.e., one
from Kevin and one from the user) are both suitable ‘end-of-conversation’ points,
based on crowdworker evaluations when the dialog was added to the graph.

3.3 Agent Instantiation

The agent was embodied as both a robot head and a virtual character in a
mobile phone app that displayed the head (Fig. 4). Kevin was placed in a public
space in an office for 12 days; members of the office could also choose to have
the Kevin app on their phones to verbally chat with him. Kevin randomly either
waited for the user to start talking or initiated the conversation himself. When
the interaction began, the state was resolved based on the current time, day,
and user history to provide the starting root node for dialog graph traversal.
When the user said an utterance, Kevin sought to match this to something in
the graph, prioritizing by the previous position as described above, borrowing if
necessary. If no response was found, Kevin would fail and say “Oops, gotta go!”.



The social robot version of Kevin is a Furhat retro-projected robot head,
augmented with a Microsoft Kinect v2, a webcam, and a long-range RFID reader.
The Kinect is used for skeleton tracking, allowing the robot to detect when
a user is approaching. Users were provided with RFID badges to wear when
interacting with the robot, enabling seamless user identification as well as storage
and retrieval of information pertaining to that user. The webcam was used to
record video logs of all interactions, and to provide an audio input for automatic
speech recognition (ASR) provided by Microsoft Cognitive Services.

The mobile version of Kevin was implemented using Unity3D to provide a
cross-platform mobile front-end to the dialog system. The phone used speech-to-
text from IBM Watson, available as a Unity3D plug-in. Both the robot and mo-
bile versions of the system connected to the same server running the dialog logic
code and the graph database where the structure was stored. All conversations
were logged in the graph database for recall in resolving starting conversation
states and for subsequent analysis.

4 Evaluation and Results

The overall aim of the evaluation was to provide a proof-of-concept that an agent
utilizing the expansion and borrowing capabilities described above could indeed
have longer conversations with less failures over time. In addition, the evaluation
allowed the collection of data to study how language was used within the user
community, demonstrating the value of the approach and providing insights into
improvements in the system design moving forwards.

4.1 Participants

Kevin was deployed in an office for 12 days with 22 users (age M(SD)=32.5(9.0)
years). The study was conducted with IRB approval; participants provided in-
formed consent and were paid. Participants were asked to interact multiple times
daily; the robot was located in the kitchen to make this a convenient occurrence.
User name, gender and time of participation was stored along with each conver-
sation; names were replaced in the AMT hits and all narratives were generated
for both genders. Participants averaged 22.1 interactions (SD=13.6), for a total
of 486 conversations. The initialized graph grew from 632 to 4292 nodes.

4.2 Graph Expansion and Utterance Use

Over time, significantly more conversations were completed successfully; day 12
failure (82%) was significantly lower than day 1 failure (100%); z = 2.913, p =
.004. Interactions also showed a trend of increasing length (Fig. 5), indicating
that the approach achieved the main goal of extending conversations based on
learned material. The system instantiation was intentionally designed to allow
explicit exploration of how the graph expanded and the impact that this had on
conversations (and vice versa). Through examining the graph node origins (user



Origin Created Created Used Borrowed Borrowed Used

ASR 270 293 207 230
AMT 2751 362 599 814

Total 3021 655 806 1044

Table 1. Origin of nodes in the final graph, with the number of times each type was
used subsequent to its initial creation. The full graph consists of 4292 nodes: 3021
‘created’ via AMT, 806 ‘borrowed’ across contexts, 13 roots, and 452 nodes that were
rejected or borrowed to a position below a temporary node before it was rejected.
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Fig. 5. Over time, our approach leads to longer conversations (primary vertical axis;
bars). The completed conversation rate is calculated from the number of conversations
ended by the agent based on both the user and the agent saying an utterance that
could end the conversation in sequence. The rate of successful conversations increases
over time (secondary vertical axis; line). Error bars show SD.

speech transcriptions – ASR nodes – and AMT expansions, and borrowing of
both), evidence suggests that both of the learning mechanisms were beneficial to
extending the conversations. Table 1 shows the breakdown of node origins and
the times they were used at the completion of the study. Average use of ASR
nodes (M=1.09, SD=0.38) was greater than the use of AMT nodes (M=0.13,
SD=0.88), however 5 AMT nodes at a time were generated at a failure point,
compared to 1 ASR node.

Our method of generalization (dialog borrowing) is supported by examining
how individuals interact with Kevin. Idiosyncrasy is calculated as the proportion
of times an individual re-visits a node that was created by him/her as opposed
to other users or the agent (via AMT). Users had a tendency to revisit nodes
they created, with the mean idiosyncrasy equal to 0.71 (SD=0.21). Thus, 71%
of ASR node visits were by the user that created them. This suggests that
users like to follow up on topics that were previously discussed and encourages
personalization for users that cannot be gained through big data use.



Generated by: this user any user AMT combined

First heard 11 119 809 939
Heard before 1 2 45 48
Combined 12 121 854 987

Table 2. Utterances heard by users (i.e., only considering nodes spoken by Kevin, not
heard by Kevin) split by the origin of the utterance and excluding “Oops, gotta go!”.

Depth difference -4 -3 -2 -1 0 1 2 3 4

Borrow count 27 33 74 128 196 161 117 44 40

Success rate (%) 89 85 92 94 94 94 91 77 90

SD (%) 6 6 3 2 2 2 3 6 5

Table 3. Borrow counts and success by depth difference in the graph. Most borrows go
to a graph depth within 1 level of the borrow origin. This suggests a semantic structure
to conversations based on depth.

The content that Kevin learns from users is made permanent if it makes sense
(as judged using the rating portion of the AMT pipeline). As a result, users can
hear back things that they have said to Kevin, or that other users have said to
Kevin. This aspect of the system is particularly advantageous as it results in
Kevin gradually acquiring utterances that are well-suited for use in the context
in which interactions are taking place (as the utterances originate directly from
those interacting in this context). Table 2 summarizes the utterances that users
hear during interactions, separated by their origin. It can be seen that novel
utterances are typically used, with a favorable proportion stemming from user
input (13.5%) considering the overall portion of nodes originating from ASR
input (9.8%). This further supports the idea that users follow up on previously
discussed topics, as ASR nodes are more likely to be part of previously raised
topics.

4.3 Emergent Graph Structure

Analyzing the depth relationships between borrows (which are performed based
on semantic similarity), it is clear that most borrows occurred at equivalent
depths in interactions (Table 3). This suggests that the conversations take some
kind of structure; semantically similar utterances were produced at roughly the
same depth in the conversations. This is likely to be in part a product of the
shorter length of conversations occurring in this context; most of the conversa-
tions covered a greeting and health inquiry near the beginning. However, when
conversations became longer, successful borrowing across depths could be used to
help further generalize responses, thereby improving the efficiency of expanding
dialog options and again offering analysis approaches not available using purely
statistical methods.



Day 1, Interaction 1
Kevin :  Hello, my name is {{ speakerA }}.
User :  Hi, how are you?
Kevin :  I'm good, how about you?
User :  I'm very good, what do you think 
    about the weather today?
Kevin :  Oops, gotta go!

Day 12, Interaction 33
User :  Hi Kevin.
Kevin :  Hello <user name>.
User :  Would you like a cup of coffee?
Kevin :  That would be great, thanks.
User :  What's your plan for Christmas?
Kevin :  I have some family flying in, so just 
    spending it with them, you?
User :  Do you have any plans this weekend?
Kevin :  Not really.
User :  OK enjoy your holidays.
Kevin :  Oops, gotta go!

Day 8, Interaction 25
User :  Hi Kevin.
Kevin :  Hello <user name>.
User :  How was your weekend?
Kevin :  It was great 
User :  What did you do?
Kevin :  Went Christmas shopping.
User :  Did you buy anything fun?
Kevin :  I was mostly shopping for others.
User :  Or what. <asr error>
Kevin :  Oops, gotta go!

Day 4, Interaction 9
Kevin :  Good afternoon <user name>.
User :  How are you today Kevin?
Kevin :  I'm good, How are you?
User :  I'm good.
Kevin :  You sounded hesitant. You sure?
User :  Yes
Kevin :  Oops, gotta go!

Fig. 6. Examples of conversations with the same user over the course of the evalua-
tion. The conversations increase in length, nearing a natural conclusion by the final
example, but also vary in content. Minor punctuation corrections have been made in
ASR transcriptions to ease readability.

5 Discussion

Conversations were extended over time and conversations increasingly ended
through reaching crowdworker marked ‘end-of-conversation’ points, rather than
through failure (Fig. 5; Sec. 4.2). Given the completely open nature of the dialog,
this kind of improvement was not necessarily guaranteed despite it being the goal
of the system design. Fig. 6 shows an example of how turns evolve as the agent
learns. This improvement provides the proof-of-concept for the system design
that the evaluation sought to demonstrate. The results show that the application
of Kevin in a persistent user community allows reuse of material generated by
users through the borrowing mechanism. This can be an advantage in producing
dialog responses that are well-suited to the environment. Simultaneously, the
crowdworking pipeline broadens the response range and can be used to validate
borrowed responses.

Kevin’s use of explicit state provides the semantic anchors for organizing
the dialog knowledge acquired. The state is used to generate the narratives in
the AMT pipeline, thereby eliciting responses that are indexed for future use
in exactly the ways that Kevin senses and represents his world. The same state
descriptions are extant when Kevin acquires language through face-to-face inter-
action. While the result is a contextualization of language that is stronger than
that which can be achieved by methods whose only representation of context is



the co-occurrence statistics of words, it is by no means perfect. In particular, it
will invariably be the case that small, engineered states will fail to include fea-
tures that always make relevant distinctions among subsets of utterances. The
current implementation of Kevin does not, for example, include any notion of
time of year. With a December deployment, it is not surprising that some of
the language learned is quite specific to the holiday season. As these utterances
are contextualized only with respect to day of week, time of day, and length
of relationship between conversants, they may well be used again in June. The
decision to restrict the state to a small number of relevant features would lead
to a less-coherent experience for users in this instance, one that might or might
not have occurred in a purely statistically-driven approach.

Interestingly, we have some evidence that Kevin’s simple mechanisms amelio-
rate the small-state problem to a degree, at least in a limited community setting.
An early implementation decision was to not include gender of the conversant as
part of the state. Nevertheless, narrative generation requires instantiating the di-
alog partners and assigning gender implicitly through names or pronoun choice.
Because Kevin uses his dialog model in both speaker and listener roles, the lack
of gender feature resulted in acquiring a response to “How are you today?” of
“Great! I just found out I am pregnant”. Kevin’s pregnancy became enough of
a topic within the office community that subsequent interactions with different
users pursued the topic until, finally, Kevin’s failure-driven learning resulted in
an AMT-authored response that resolved the situation: “it was just a joke <user
name>, guys can’t get pregnant”. Whether Kevin can learn to recognize such
paths through his knowledge graph as opportunities for discovering important
distinctions is a topic for future work, but one that is made possible by being
able to inspect the dialog traces and their accompanying states over time.

In the future, we intend to reintroduce explicit goal structure to Kevin, in-
cluding both conversational and non-conversational task goals. Furthermore, we
will explore the trade-off between exploitation of re-using utterances that are
known to be valid, against exploring a greater number of the available but
untested utterances. We also expect to replace the current “copy and paste”
method for growing the graph with a more efficient dialog representation in
which utterance nodes store vertices connected to the states in which they have
been validated. Such a change would still permit observing relationships between
state variables and their effects on dialog use.

6 Conclusion

Our agent, Kevin, uses face-to-face dialog, semi-situated elicitation of dialog,
and generalization of dialog context via semantic similarity to bring about ad-
vantages for users during interactions. The generalization method enables the
agent to continue conversations in the moment, whilst the AMT pipeline pro-
vides breadth in responses to help further extend conversations over time. The
generalization method additionally enables reuse of user spoken utterances, al-
lowing idiosyncrasy and appropriateness in conversations with individual users,



and with the larger user community. This paper described the system design in
detail and provided a proof-of-concept for the approach. An evaluation consisting
of 486 conversations with 22 users over a 3 week period demonstrated that while
the generalization is not perfect, it provides a practicable and beneficial option
when large corpora are not available to use with purely statistical approaches in
an interaction scenario.
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